

A self-contained, sterile-packaged jet lavage delivering low pressure irrigation to meet your clinical needs.

Harnessing the power of CHG as a preservative in the solution to offer broad spectrum activity against various microorganisms.

Irrisept is non-cytotoxic and backed by evidence.

THE ROLE OF IRRIGATION IN INFECTION PREVENTION

Infection is the most common complication of a wound.¹ A wound infection with microorganisms is one of the most common HAIs, globally.²

By using wound irrigation, you can remove foreign materials, cellular debris, and bacterial contaminants from wounds. 1-2 Microorganisms may be more susceptible to removal when a combination of mechanical action and a preservative (like CHG) in the solution are used. 3-4 The choice of irrigation can be a critical component in your infection prevention plan. 1

Irrisept is intended for mechanical cleansing and removal of debris, dirt, and foreign materials, including microorganisms from wounds.

WHAT IS CHG?

Chlorhexidine Gluconate, or **CHG**, is a well-known antimicrobial used in pharmaceuticals and medical devices for more than half a century.^{5, 7} CHG is a positively (+) charged molecule that rapidly binds to a negatively (-) charged bacterial cell wall, causing disruption of the cell membrane and subsequent cellular death.^{5, 7}

As a preservative in the solution, CHG features:

- Broad spectrum activity against a variety of gram-positive and gram-negative bacteria, fungi, and some viruses.^{5, 8}
- Quick onset of action/persistent effect, allowing it to remain active long after the initial application.^{5, 7-9}
- Antimicrobial activity not limited by the presence of body fluids such as blood, in contrast to povidone-iodine.⁹⁻¹⁰

Irrisept offers Performance, Safety, and Ease of Use and is backed by testing and independent research.^{5,8,10-15,17-24}

- CHG preservative effective against gram-positive and gram-negative bacteria, fungi, and some viruses^{5,8}
- Outperforms 0.35% PVP-I in inhibiting the growth of microorganisms in the presence of organic matter¹⁰
- Biofilm disruption
 >99% on tested
 organisms in CDC
 Biofilm Reactor Study¹¹

- Extensive safety testing including invivo studies and RCT data^{13, 15}
- For all types of wounds
- Non-cytotoxic¹³
- O IFFISE P. C. STREET, C. STREET,

- Sterile-packaged, ready to open and use
- Manual compression, delivers low pressure irrigation per ACS recommendations¹²
- Requires no mixing or dilution, dispensing, or attachment to other irrigation systems
- Referenced by name and/or concentration in independent publications 17-24

TRUSTED BY MORE THAN

3,000

U.S. HOSPITALS FOR THEIR
IRRIGATION NEEDS¹⁴

IRRISEPT — IRRIGATION WITH EVIDENCE 'all studies are ava

*all studies are available upon request

CDC Biofilm Reactor Study¹¹

Irrisept mechanically disrupted all clinically relevant biofilms tested.

>99% reduction

Figure 1: SEM of P. aeruginosa (ATCC® 15442™) on titanium coupons

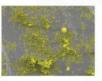


Image Left: Growth control; Image Right: Biofilm after treatment with Irrisept per IFU.

Figure 2: SEM of E. coli (ATCC® 25922™) on titanium coupons

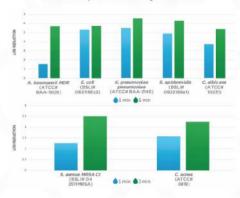


Image Left: Growth control; Image Right: Biofilm after treatment with Irrisept per IFU.

Kinetic Time-Kill Study⁸

Shows Irrisept was effective in reducing the microbial load against a variety of gram-positive and gram-negative bacteria, fungi, and viruses in the solution.

*Refer to study for full list of organisms tested.

IRRISEPT VS 0.35% PVP-I10

Determination of the MIC & MBC in the presence of organic matter shows superior results with Irrisept.

- MIC Assay: No visible growth observed for 0.05% CHG with or without the presence of organic matter whereas microbial growth was observed on all organisms tested for 0.35% PVP-I in the presence of organic matter.
- MBC Assay: Microbial count reduction was >4.24 log₁₀ with 0.05% CHG for all tested organisms with
 or without presence of organic matter whereas microbial count reduction with 0.35% PVP-I was
 <2.15 log₁₀ for all organisms tested in the presence of organic matter.

MBC ASSAY RESULTS										
Test Article	Microbial Reduction									
	E. coli		P. aeruginosa		S. aureus		S. epidermidis		S. agalactiae	
	%	Log ₁₀	%	Log ₁₀	%	Log ₁₀	%	Log ₁₀	%	Log ₁₀
0.05% CHG	99.99	4.24	99.99	4.31	99.99	4.55	99.99	4.49	99.99	4.45
0.05% CHG + 10% serum	99.99	4.24	99.99	4.31	99.99	4.55	99.99	4.49	99.99	4.45
0.35 PVP-I	≤98.55	1.84	≤98.77	1.91	99.99	4.55	99.99	4.49	99.99	4.45
0.35 PVP-I + 10% serum	≤98.55	1.84	≤98.77	1.91	≤99.30	2.15	≤99.20	2.09	≤99.11	2.05

Extensive safety studies, including in-vivo testing and RCT data^{13, 15}

Study Description	Pass/Complete	Results/Conclusion
Cytotoxicity	✓	Irrisept solution is non-cytotoxic. No abnormal events such as pH change or debris were noted.
Skin Irritation	✓	Irrisept solution did not elicit any kind of sensitization response.
Immune Allergic Response	✓	Irrisept solution passed ISO Intracutaneous Reactivity Test.

List of other in-vivo safety studies

- Hemolysis
- Pharmacokinetics
- Intraperitoneal Organ Toxicity
- Acute Systemic Toxicity
- Material Mediated Pyrogenicity
- Neurotoxicity
- Thoracic Tissue Toxicity Porcine
- Thoracic Adhesion Study Canine
- Intra-Articular Cell Toxicity
- Wound Healing Study
- CLP-01 (Assessment of RCT: Irrisept vs SOC)¹⁵

IRRISEPT IS DESIGNED WITH EASE OF USE IN MIND

Irrisept is sterile-packaged, ready to open and use

Simply open the bottle and attach the Irriprobe® applicator

Manually compress the bottle to deliver stream directly to the site

No mixing, dispensing, diluting, or attachment to additional irrigation devices necessary

WHEN COMPARED TO IRRISEPT, HOW DO OTHER IRRIGATIONS MEASURE UP?

Check and compare using the table below

Irrigation Profiles	Irrisept	Other Solution (Normal Saline, Antibiotics, PVP-I, Other)
Demonstrates effectiveness as a preservative against gram-positive and gram-negative bacteria, fungi, and viruses in the solution ^{5, 8}	\checkmark	
Requires no mixing or dilution, dispensing, or attachment to other irrigation systems, unless desired	\checkmark	
Features extensive safety studies, including in-vivo testing and RCT results ^{13, 15}	\checkmark	
Sterile packaged and ready to use	\checkmark	
For use on all types of wounds	\checkmark	
Delivers low pressure irrigation per American College of Surgeons' recommendations ¹²	\checkmark	
Aligns with the goals of Antibiotic Stewardship Programs ¹⁶	\checkmark	
Does not impede wound healing properties ¹³	\checkmark	
Referenced by name and/or concentration in independent publications ¹⁷⁻²⁴	\checkmark	
Free of surfactants, excipients, detergents, and other solvents	\checkmark	
Non-pyrogenic	\checkmark	
Healthcare economic data available upon request	\checkmark	
<\$80/use		

WARNINGS:

- Do not use this product if the patient is allergic to chlorhexidine gluconate.
- Discontinue use immediately if irritation, sensitization, or allergic reaction occurs.

CAUTIONS:

- Do not use unless solution is clear and bottle twist seal is intact.
- When using this product, keep away from the eyes and ear canals. If the solution inadvertently contacts these areas, rinse out promptly and thoroughly with water and/or normal saline.
- · Not for injection.
- Single patient use only.
- Irrisept is intended for use in adults by healthcare professionals only.
- Irrisept solution meets biocompatibility guidelines for ≤24 hours contact with breached or compromised surfaces (ISO 10993-1).
- Do not use if the package is damaged.
- · Rx only.

REFERENCES

- 1. Lewis, K., & Pay, J. (2021, January). Wound Irrigation. NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK538522/
- Pieper et al. (2018, October 5). The Role of Saline Irrigation Prior to Wound Closure in the Reduction of Surgical Site Infection: Protocol for a Systematic Review and Meta-Analysis - Systematic Reviews. BioMed Central. https://systematicreviewsjournal.biomedcentral.com/ articles/10.1186/s13643-018-0813-7
- Goztok et al. (2018). Does Wound Irrigation With Chlorhexidine Gluconate Reduce the Surgical Site Infection Rate in Closure of Temporary Loop Ileostomy? A Prospective Clinical Study. Surg Infect, 19(6), 634–639. https://doi.org/10.1089/sur.2018.061
- 4. Chen et al. (2018). Chlorhexidine Gluconate and Mechanical Irrigation Reduces Biofilm on Smooth and Rough Titanium Surfaces [Conference Presentation]. ORS 2018 Annual Meeting, New Orleans, LA
- 5. Milstone, A. M., Passaretti, C. L., & Perl, T. M. (2008). Chlorhexidine: Expanding the Armamentarium for Infection Control and Prevention. Clin Inf Disease, 46(2), 274–281. https://doi.org/10.1086/524736
- 6. Medline. (n.d.). Search results for 'chg'. Medline. Retrieved July 19, 2022, from https://www.medline.com/search/products/chg
- 7. McDonnell, G., & Russell, A. D. (1999). Antiseptics and Disinfectants: Activity, Action, and Resistance. Clin Micro Rev, 12(1), 147–179. https://doi.org/10.1128/cmr.12.1.147
- 8. (2022). KTK Summary. Doc. 537114 V2. Evaluation of CHG as a preservative in the solution
- Lim, K.-S., & Kam, P. C. A. (2008). Chlorhexidine Pharmacology and Clinical Applications. Anaes Int Care, 36(4), 502–512. https://doi.org/10.1177/0310057x0803600404
- 10. (2022). Executive Summary-Determination of the MIC & MBC in the Presence of Organic Matter for 0.05% CHG Solution and 0.35% PVP-I. Doc. 693300 V2. Evaluation of CHG and PVP-I as preservatives in the solution
- 11. Perfectus Biomed Group. (2022). Biofilm Testing of Irrisept Antimicrobial Wound Lavage in an In Vitro Model (Report PB707-001-V3) and Latent Effect of Biofilm Testing of Irrisept Antimicrobial Wound Lavage in an In Vitro Model (Report PB707-002-V2)
- 12. Ashley et al. (2014). Acute Wound Care. ACS Surgery: Princ Prac. (7th ed., pp. 215-216). Decker Intellectual Properties Inc.
- 13. Biocompatibility Matrix. Data on file at Irrimax Corp. Lawrenceville, GA
- 14. Data on file at Irrimax Corp., Lawrenceville, GA
- (2022). Protocol CLP-01: An Independent Review of Safety Data From a Closed Clinical Study Using Irrisept (Protocol # IRR-CT-901-2013-01)
- 16. CDC. (2021). Core Elements of Hospital Antibiotic Stewardship Programs. Centers for Disease Control and Prevention. https://www.cdc.gov/antibioticuse/core-elements/hospital.html
- 17. Spencer et al. (2017). Reduction in Colon Surgical Site Infections Using CHG Irrigant Solution [Conference Presentation]. AORN 2017, Boston. MA
- 18. Truitt, K., & Kleinheinz, S. (2017). Target Zero: Eliminating Surgical Site Infection With 0.05% CHG Jet Lavage Irrigation [Conference Presentation]. AORN 2017, Boston, MA
- 19. Dotson, N., Rasheid, S., Marcet, J., & Sanchez, J. (2015). In Irrigation of Incisions With 0.05% CHG Reduces Surgical Site Infections in Colorectal Surgery [Conference Presentation]. ASCRS 2015, Boston, MA
- 20. Merceron et al. (2019). Comparison of Complications Following Implant-Based Breast Reconstruction Using Triple Antibiotic Solution Versus Low Concentration Chlorhexidine Gluconate Solution. Mod Plas Surg, 09(04), 74–85. https://doi.org/10.4236/mps.2019.94010
- 21. Mangold et al. (2019). Standardising Intraoperative Irrigation with 0.05% Chlorhexidine Gluconate in Caesarean Delivery to Reduce Surgical Site Infections: A Single Institution Experience. J Peri Practice, 30(1-2), 24-33. https://doi.org/10.1177/1750458919850727
- 22. Lung et al. (2022). Chlorhexidine Gluconate Lavage During Total Joint Arthroplasty May Improve Wound Healing Compared to Dilute Betadine. J Exp Ortho, 9(1). https://doi.org/10.1186/s40634-022-00503-w
- 23. Driesman et al. (2020). Perioperative Chlorhexidine Gluconate Wash During Joint Arthroplasty has Equivalent Periprosthetic Joint Infection Rates in Comparison to Betadine Wash. J Arthroplasty, 35(3), 845–848. https://doi.org/10.1016/j.arth.2019.10.009
- 24. Frisch et al. (2017). Intraoperative Chlorhexidine Irrigation to Prevent Infection in Total Hip and Knee Arthroplasty. Arth Today, 3(4), 294–297. https://doi.org/10.1016/j.artd.2017.03.005

CONTACT

PHONE: 770.807.8445 FAX: 770.788.1079

EMAIL: cs@irrisept.com WEB: www.irrisept.com

ORDERING INFORMATION:

REF#	PRODUCT NAME	PRODUCT DESCRIPTION	CASE QTY
ISEPT-450-USA	Irrisept Antimicrobial Wound Lavage	450mL bottle of Irrisept Antimicrobial Wound Lavage, with Irriprobe	12
ISEPT-150-USA	Irrisept Antimicrobial Wound Lavage	150mL bottle of Irrisept Antimicrobial Wound Lavage, with Irriprobe	15

Irrisept Antimicrobial Wound Lavage is available through most medical supply distributors. To order Irrisept, contact your preferred distributor, your Irrisept Sales Representative, or Irrisept Customer Service.

©2022 Irrimax Corporation. All Rights Reserved. Irrisept® and Irriprobe® are registered trademarks of Innovation Technologies, Inc., parent company of Irrimax Corporation.