Wound Care Innovations.

Empowering Solutions.

and the second

Antimicrobial ECM Bioengineered Living Cells Placental Allografts

Antimicrobial ECM

Start with PuraPly® Antimicrobial for all wound types

PuraPly®XT Extra Fenestrated Five-layer Antimicrobial Wound Matrix

Puts you in immediate control of the healing environment

The advanced antimicrobial barriers help control bioburden between weekly debridements¹⁻⁵

POWERFUL UNIQUE COMBINATION

 Native, cross-linked ECM + broad-spectrum PHMB acts as a bridge between weekly debridements by providing a sustained antimicrobial barrier effect¹⁻⁵

EARLY BIOBURDEN MANAGEMENT

 The PuraPly[®] Antimicrobial product line is the optimal foundation of care following sharp debridement to control bioburden and prevent biofilm re-formation⁶⁻⁸

SUPPORTS HEALING

• In real-world clinical studies, PuraPly[®] AM demonstrated a decrease in wound size, reduction in time to closure, and an increase in observed granulation tissue^{9,10}

ELIMINATES THE NEED FOR AT-HOME PRIMARY DRESSING CHANGES

Patient adherence improves when treatments require less intervention¹¹

PRODUCT FEATURES

PuraPlyAM

Two layers of native, cross-linked ECM¹

Expanding clinical evidence in a variety of acute and chronic wounds^{9,10}

Multiple sizes available

Five layers of native, cross-linked ECM²

Thicker ECM maximizes surface area for PHMB saturation^{2,7,13}

A higher number of fenestrations compared to PuraPly $AM^{1,2}$

BRIDGE BETWEEN WEEKLY DEBRIDEMENT¹²

Day 1

Day 7

Bioengineered Living Cells

For stalled VLUs and DFUs

Innovation that remains ahead of its time

The biotech healer for stalled venous leg ulcers (VLUs) and diabetic foot ulcers (DFUs)

BIOENGINEERED WITH LIVING CELLS

- Apligraf[®] looks, functions, and responds like healthy human skin¹⁴⁻¹⁷
- The cells of Apligraf are bioactive and poised to heal^{15,18}

TRANSFORMS WOUNDS FROM CHRONIC TO ACUTE

- Apligraf activates the patient's cells and helps regulate and correct growth factor signaling^{19,20}
- Apligraf helps restore normal healing functions, putting wounds back on track to heal^{15,18,19,21}

BACKED BY UNMATCHED CLINICAL PROOF

- Extensive studies have demonstrated time and again Apligraf's ability to heal more VLUs and DFUs faster^{14,22-27}
- Only Apligraf has conducted randomized controlled trials (RCTs) resulting in FDA approval for VLUs and DFUs¹⁴

PROVEN TO BE COST-EFFECTIVE

 Helps to reduce VLU and DFU burden on patients and healthcare costs²⁸⁻³¹

UNSURPASSED ACCESS FOR PATIENTS

 100% of Medicare contractors and commercial medical policies cover Apligraf treatment for VLUs and DFUs

Placental Allografts

For all stalled wound types

Affinity® Fresh Amniotic Membrane

Living cells. Fresh solution.

Affinity[®] is the only fresh amniotic membrane wound covering³²⁻³⁴ and has been shown to help move wounds from stalled to closed³⁵

CLOSEST CHOICE TO NATIVE AMNIOTIC MEMBRANE

● Affinity uses a gentle, proprietary process, AlloFresh[™], that preserves the product in its fresh state and retains its native tissue characteristics^{32,33,36-38}

OPTIMAL TISSUE COMPOSITION

Never frozen or dehydrated, Affinity retains:

- Viable endogenous cells, including epithelial cells and fibroblasts^{33,36}
- Growth factors and cytokines^{33,39}
- Native extracellular matrix (ECM) proteins^{33,37,38}
- Spongy layer³³

CLINICAL DATA IN RANDOMIZED CONTROLLED TRIAL AND REAL-WORLD SETTINGS

• As a protective wound covering, Affinity has been shown to support healing in a variety of wound types^{35,40-42}

Note: Affinity is intended for use as a wound covering and barrier.

The most complete dehydrated placental allograft wound covering^{37,43}

Convenience without compromise to support an optimal environment for healing

COMPLETE LAYERS SET NuSHIELD APART

 NuShield[®] is a shelf-stable, dehydrated placental allograft wound covering that undergoes a unique preservation method and retains all layers of the placental membrane, including the spongy layer^{43,44}

RETAINS GROWTH FACTORS AND CYTOKINES^{43,45,46}

 Following processing, analytical testing identified 640 components (growth factors, cytokines, and chemokines) that are retained in NuShield⁴⁶

CLINICAL DATA

 As a protective wound covering and in real-world patients, NuShield has been shown to support a favorable environment for healing in a variety of wound types and sizes⁴⁷

Addressing Wounds From Head to Toe With Innovative Solutions^{*}

* Organogenesis offers a variety of innovative products for wound care that are FDA PMA approved, 510(k) cleared, or are marketed under Section 361 of the Public Health Service Act as HCT/Ps.

[†] Apligraf is approved for the treatment of VLUs and DFUs.

Organogenesis is a leader in wound healing and for over 20 years has provided innovative solutions to help empower clinicians.

www.organogenesis.com

Organogenesis' Circle of Care is a comprehensive program that provides the highest-quality customer service and reimbursement support, with a wide range of expertise that includes benefits verification, information on ordering and shipping, and details on coding.

References

1. PuraPly Antimicrobial [package insert]. Canton, MA: Organogenesis Inc; 2020. 2. PuraPly XT Extra Fenestrated [package insert]. Canton, MA: Organogenesis Inc. 3. Data on file. PDR-0001. Organogenesis Inc. 4. Data on file. PDR-0002. Organogenesis Inc. 5. Data on file. PDR-0003. Organogenesis Inc. 6. Hübner NO, et al. Skin Pharmacol Physiol. 2010;23(1 suppl):17-27. 7. Brantley J, et al. Wounds Int. 2016;7(3):1-5. 8. Gilbert P, et al. J Appl Microbiol. 2005;99(4):703-715. 9. Oropallo AR. Plast Reconstr Surg Glob Open. 2019;7:e2047. 10. Bain MA, et al. Plast Reconstr Surg Glob Open. 2019;7(6):e2251. 11. Atreja A, et al. MedGenMed. 2005;7(1):4. 12. Davis SC, et al. Int Wound J. 2021;1-14. https://doi.org/10.1111/iwj.13600. 13. Carpenter S, et al. Wounds. 2016;28(6 suppl):S1-S20. 14. Apligraf [package insert]. Canton, MA: Organogenesis Inc; 2017. 15. Milstone LM, et al. Wounds. 2000;12(5 suppl A):12A-19A. 16. Schmid P. Wounds. 2000;12(5 Suppl A):4A-11A. 17. Carlson M, et al. Tissue Eng Part A. 2011;17(3-4):487-493. 18. Falanga V, et al. J Invest Dermatol. 2002;119(3):653-660. 19. Stone RC, et al. Sci Transl Med. 2017;9(371).doi:10.1126/scitranslmed.aaf8611. 20. Stone RC, et al. Wound Repair Regen. 2020;28:164-176. 21. Brem H, et al. Surg Technol Int. 2003;11:23-31. 22. Marston WA, et al. Wound Repair Regen. 2014;22(3):334-340. 23. Treadwell T, et al. Adv Wound Care. 2018;7(3):69-76. **24.** Sabolinski ML, et al. *J Comp Eff Res.* 2018;7(8):797-805. **25.** Veves A, et al. *Diabetes Care.* 2001;24(2):290-295. **26.** Kirsner RS, et al. *Wound Repair Regen.* 2015;23(5):737-744. **27.** Data on file. Organogenesis Inc. **28.** Rice JB, et al. *J Med Econ.* 2014;17(5):347-356. 29. Barshes NR, et al. Diabet Foot Ankle. 2013;4.doi:10.3402/dfa.v4i0.21847. 30. Schonfeld WH, et al. Wound Repair Regen. 2000;8(4):251-257. 31. Rice JB, et al. J Med Econ. 2015;18(8):586-595. 32. Data on file. DR-0005. Organogenesis Inc. 33. McQuilling JP, et al. Int Wound J. 2017;14(6):993-1005. 34. Affinity Allograft Tissue Information and Instructions for Use. Canton, MA: Organogenesis Inc; 2021. 35. Serena TE, et al. J Comp Eff Res. 2020;9(1):23-34. 36. Data on file. DR-0008. Organogenesis Inc. 37. Niknejad H, et al. Eur Cells Mater. 2008;15:88-99. 38. Mamede AC, et al. Cell Tissue Res. 2012;349(2):447-458. 39. Data on file. DR-0007. Organogenesis Inc. 40. Sabo M, et al. Chronic Wound Care Manage Res. 2018;5:1-4. 41. Lambert CJ, et al. Poster presented at: Symposium on Advanced Wound Care Fall 2015; September 26-28, 2015; Las Vegas, NV. 42. Carpenter S, et al. Poster presented at: 4th Annual Innovations in Wound Healing Conference; December 7-10, 2017; Bimini, Bahamas. 43. McQuilling JP, et al. Int Wound J. 2019;16(3):827-840. 44. Data on file. Description of BioLoc Process. Organogenesis Inc. 45. Data on file. DR-0004. Organogenesis Inc. 46. McQuilling JP, et al. Wound Repair Regen. 2019;27(6):609-621. **47.** Caporusso J, et al. *Wounds*. 2019;31(4 Suppl):S19-S27.

©2021 Organogenesis Inc. OI-AWCP1079 REV 001 EXP 09/2023 All rights reserved. Printed in the USA.

Apligraf is a registered trademark of Novartis. PuraPly, Affinity, and NuShield are registered trademarks of Organogenesis Inc.

